Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Biol Med ; 151(Pt A): 106318, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2120277

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significantly impacting human lives, overburdening the healthcare system and weakening global economies. Plant-derived natural compounds are being largely tested for their efficacy against COVID-19 targets to combat SARS-CoV-2 infection. The SARS-CoV-2 Main protease (Mpro) is considered an appealing target because of its role in replication in host cells. We curated a set of 7809 natural compounds by combining the collections of five databases viz Dr Duke's Phytochemical and Ethnobotanical database, IMPPAT, PhytoHub, AromaDb and Zinc. We applied a rigorous computational approach to identify lead molecules from our curated compound set using docking, dynamic simulations, the free energy of binding and DFT calculations. Theaflavin and ginkgetin have emerged as better molecules with a similar inhibition profile in both SARS-CoV-2 and Omicron variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Peptide Hydrolases , Pandemics
2.
J Biomol Struct Dyn ; : 1-15, 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2028812

ABSTRACT

The COVID-19 pandemic is spreading rapidly due to the outbreak of novel coronavirus SARS-CoV-2 across the globe. Anti-COVID-19 drugs are urgently required in this situation. In this regard, the discovery of promising new anti-COVID-19 moieties is expected from traditional medicine. The study is aimed to discover phytochemicals of Cocculus hirsutus having anti-COVID-19 activity via inhibiting main proteases of SARS-CoV-2. Main proteases (Mpro) of SARS-CoV-2 serve as a protuberant target for anti-COVID-19 drug discovery because it is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription that makes it an attractive drug target. Recent studies indicated the utility of C. hirsutus in the treatment of viral disorders like Dengue. Phytochemicals from C. hirsutus were docked against SARS-CoV-2 main proteases (6LU7, 5R7Y, 5R7Z, 5R80, 5R81, 5R82) using the PyRx virtual screen tool and discovery studio visualizer. Further, molecular dynamics simulations were performed (for 100 ns) to see conformational stability for all complexes. Pharmacokinetic properties and drug-likeness prediction of selected C. hirsutus phytoconstituents were also performed. Betulin, coclaurine, and quinic acid of C. hirsutus were found promising with significant binding affinity to SARS-CoV-2 Mpro in comparison to control. They have shown stable interactions with the amino acid residues present on the active site of most of the SARS-CoV-2 Mpro and were found as promising anti-COVID-19 candidates. These compounds could be potential leads for the development of target-specific anti-COVID-19 therapeutics while ethnomedicinal uses of this herb could further needed for its detailed antiviral therapeutic exploration.Communicated by Ramaswamy H. Sarma.

3.
Comput Biol Med ; 145: 105468, 2022 06.
Article in English | MEDLINE | ID: covidwho-1763672

ABSTRACT

The ongoing COVID-19 pandemic has affected millions of people worldwide and caused substantial socio-economic losses. Few successful vaccine candidates have been approved against SARS-CoV-2; however, their therapeutic efficacy against the mutated strains of the virus remains questionable. Furthermore, the limited supply of vaccines and promising antiviral drugs have created havoc in the present scenario. Plant-based phytochemicals (bioactive molecules) are promising because of their low side effects and high therapeutic value. In this study, we aimed to screen for suitable phytochemicals with higher therapeutic value using the two most crucial proteins of SARS-CoV-2, the RNA-dependent RNA polymerase (RdRp) and main protease (Mpro). We used computational tools such as molecular docking and steered molecular dynamics simulations to gain insights into the different types of interactions and estimated the relative binding forces between the phytochemicals and their respective targets. To the best of our knowledge, this is the first report that not only involves a search for a therapeutic bioactive molecule but also sheds light on the mechanisms underlying target inhibition in terms of calculations of force and work needed to extractthe ligand from the pocket of its target. The complexes showing higher binding forces were subjected to 200 ns molecular dynamic simulations to check the stability of the ligand inside the binding pocket. Our results suggested that isoskimmiwallin and terflavin A are potential inhibitors of RdRp, whereas isoquercitrin and isoorientin are the lead molecules against Mpro. Collectively, our findings could potentially aid in the development of novel therapeutics against COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptide Hydrolases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , RNA-Dependent RNA Polymerase
4.
Gene Rep ; 26: 101512, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1637135

ABSTRACT

The outbreak of the COVID-19 pandemic has cost five million lives to date, and was caused by a positive-sense RNA virus named SARS-CoV2. The lack of drugs specific to SARS-CoV2, leads us to search for an effective and specific therapeutic approach. Small interfering RNA (siRNA) is able to activate the RNA interference (RNAi) pathway to silence the specific targeted gene and inhibit the viral replication, and it has not yet attracted enough attention as a SARS-CoV2 antiviral agent. It could be a potential weapon to combat this pandemic until the completion of full scale, effective mass vaccination. For this study, specific siRNAs were designed using a web-based bioinformatics tool (siDirect2.0) against 14 target sequences. These might have a high probability of silencing the essential proteins of SARS-CoV2. such as: 3CLpro/Mpro/nsp5, nsp7, Rd-Rp/nsp12, ZD, NTPase/HEL or nsp13, PLpro/nsp3, envelope protein (E), spike glycoprotein (S), nucleocapsid phosphoprotein (N), membrane glycoprotein (M), ORF8, ORF3a, nsp2, and its respective 5' and 3'-UTR. Among these potential drug targets, the majority of them contain highly conserved sequences; the rest are chosen on the basis of their role in viral replication and survival. The traditional vaccine development technology using SARS-CoV2 protein takes 6-8 months; meanwhile the virus undergoes several mutations in the candidate protein chosen for vaccine development. By the time the protein-based vaccine reaches the market, the virus would have undergone several mutations, such that the antibodies against the viral sequence may not be effective in restricting the newly mutated viruses. However, siRNA technology can make sequences based on real time viral mutation status. This has the potential for suppressing SARS-CoV2 viral replication, through RNAi technology.

5.
J Biomol Struct Dyn ; 40(8): 3745-3752, 2022 05.
Article in English | MEDLINE | ID: covidwho-939481

ABSTRACT

Spike protein and main proteases of SARS-CoV-2 have been identified as potential therapeutic targets and their inhibition may lead to the reticence of viral entry and replication in the host body. Despite several efforts; till now no specific drugs are available to treat SARS-CoV-2. Considering all these challenges, the main objective of the present study was to establish therapeutic potential of cordycepin against COVID-19 as a conventional therapeutic strategy. In the present study; molecular interaction study was performed to assess potential binding affinity of cordycepin with SARS-CoV-2 target proteins using computational approach. Additionally, network pharmacology was used to understand cordycepin-protein interactions and their associated pathways in human body. Cordycepin is under clinical trial (NCT00709215) and possesses structural similarity with adenosine except that, it lacks a 3' hydroxyl group in its ribose moiety and hence it served as a poly(A) polymerase inhibitor and terminate premature protein synthesis. Additionally, it is known that functional RNAs of SARS-CoV-2 genome are highly 3'-plyadenylated and leading to synthesis of all viral proteins and if cordycepin can destabilize SARS-CoV-2 RNAs by inhibiting polyadenylation process then it may step forward in terms of inhibition of viral replication and multiplication in the host. Moreover, cordycepin showed strong binding affinity with SARS-CoV-2 spike protein (-145.3) and main proteases (-180.5) that further corroborate therapeutic potential against COVID-19. Since cordycepin has both pre-clinical and clinical information about antiviral activities, therefore; it is suggested to the world community to undertake repurposing cordycepin to test efficacy and safety for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Cordyceps , Antiviral Agents/chemistry , Clinical Trials as Topic , Cordyceps/metabolism , Deoxyadenosines , Humans , Peptide Hydrolases/metabolism , Polyadenylation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL